

Kostentheorie 4 0

a. Bisheriges Betriebsergebnis

db	9,00
m	16.000,00
DB	144.000,00
Kf	-100.000,00
BE	44.000,00

b. Beschäftigungsintervalle

	Normal		Nachtarbeit	
y * t = m	160 Std	40 Std	40 Std	
	16.000 Stück	4.000 Stück	4.000 Stück	
Intervalle	0 - 16.000	16.000 - 20.000	20.000 - 24.000	

c. Stückkosten der Intervalle

Für jedes Beschäftigungsintervall ergeben sich durch die Zuschläge neue Stückkosten.

kv(1) für $0 \le m \le 16.000$ kv(2) für $16.000 < m \le 20.000$ kv(3) für $20.000 < m \le 24.000$

	Lonstückkosten bei yopt	Zuschläge in %	Zuschläge in €	gesamte kvar bei yopt	kvar je Intervall
kv(1)	1,80			5,00	5,00
kv(2)	1,80	50%	0,90	5,00	5,90
kv(3)	1,80	100%	1,80	5,00	6,80

Grenzkosten

d. Kostenfunktionen

Unter Berücksichtigung von Überstunden und Nachtarbeit ergeben sich die folgenden Kostenfunktionen:

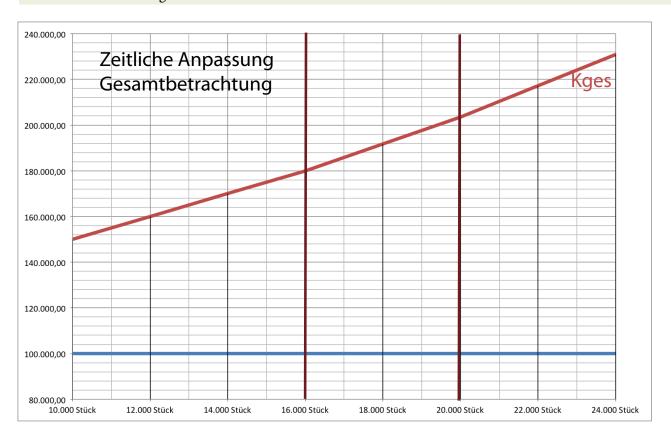
Kostenfunktion Intervall

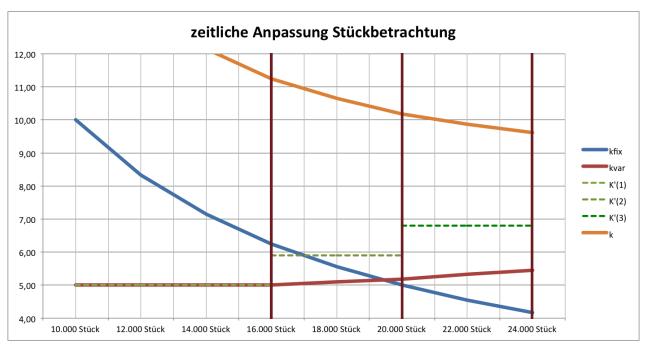
Normalstunden: K1 = 100.000 + (5,00 * 16.000) $0 \le X \le 16.000$ Überstunden: K2 = K1 + 5,90 * (20.000 - 16.000) $16.000 < X \le 20.000$ Nachtarbeit: K3 = K2 + 6,80 * (24.000 - 20.000) $20.000 < X \le 24.000$

oder mathematisch dargestellt:

$$K(x) = \begin{cases} 5,00 \text{ x} + 100.000 & \text{für } 0 <= x <= 16.000 \\ 5,90 \text{ x} + 85.600 & \text{für } 16.000 <= x <= 20.000 \\ 6,80 \text{ x} + 67.600 & \text{für } 20.000 <= x <= 24.000 \end{cases}$$

<u>Die mathematische Herleitung dazu</u>





e. Gesamtkosten

Menge K = Kf + kv * m 16.000 Stück 180.000,00 20.000 Stück 203.600,00 24.000 Stück 230.800,00

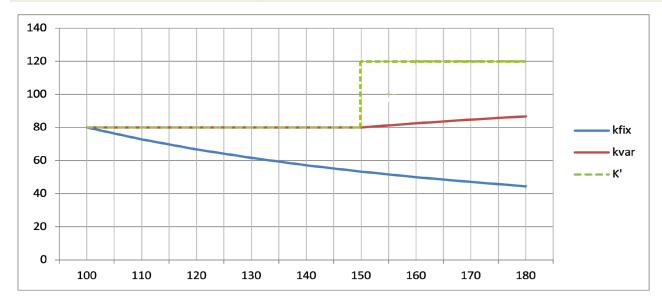
f. Grafische Darstellungen

Kostentheorie 4

g. Betriebsergebnis neu mit bisherigem Preis

E(24.000) 336.000,00 K(24000) -230.800,00 BE 105.200,00

h. maximales Preiszugeständnis


Änderung des Bes61.200,00Menge des Zusatzauftrags8.000 Stückmax Preisnachlass7,65Mindestpreis6,35

i. Argumente des Personalrats

- gesundheitliche Risiken, die sich langfristig negativ auswirken könnten, auch über die Beschäftigungsdauer hinweg.
- negative Auswirkung auf das Standing des Unternehmens auf dem Arbeitsmarkt (Employer Branding). Stressige Arbeitsbedingungen werden potenzielle neue Mitarbeiter vielleicht abschrecken.

4_1 Aufgaben zur zeitlichen Anpassung

a. Skizzieren Sie in einem Koordinatensystem den Verlauf von k, kv, K' und kf.

b. Bestimmen Sie KF, K, k und kv bei einer Ausbringungsmenge von 180 Stück.

Kfix	8.000,00
K = Kfix + 80 * 150 + 120 * 30	23.600,00
k = K/m	131,11
kv	86.67

4_1 Aufgabe 2

a) Bestimme K für 99 Stück,100 Stück und 101 Stück

x 99 Stück 100 Stück 101 Stück K 49.700,00 50.000,00 50.450,00

b) Grenzkosten (K')

K'(Intervall 1) 300,00 K'(Intervall 2) 450,00

c) die neue Kostenfunktion für das Intervall 101<=x<=140.

K(101 < x < 140) = 450x + t 50.450,00 = 450*101 + t 50450-45450 = t t = 5.000,00K(101 < x < 140) = 450x + 5.000

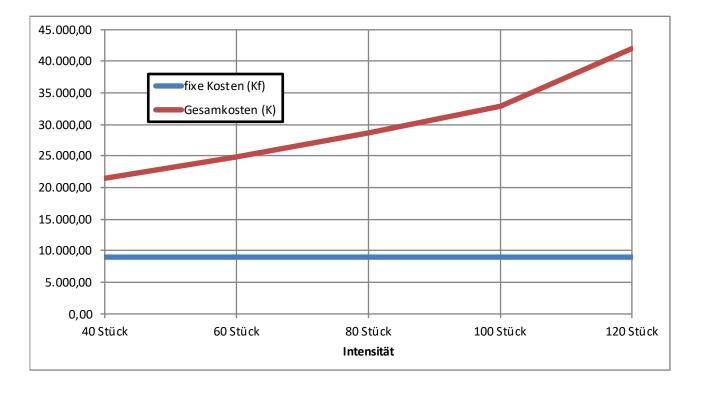
d) Kosten bei 120 Stück

K(120 Stück) = 59.000,00

4_2 intensitätsmäßige Anpassung

a. Gesamtkosten bei y=80

Hinweis: m = y * Arbeitszeit

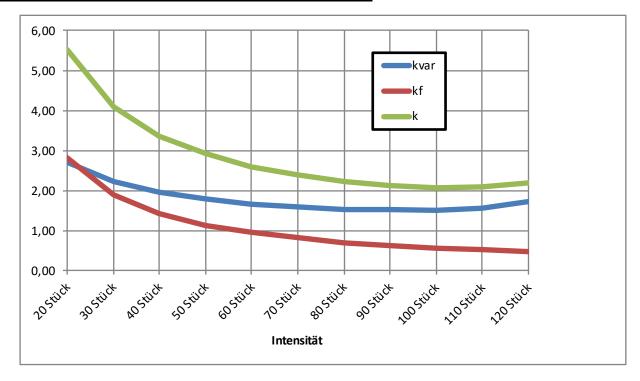

m = 80 * 160 = 12.800 Stück

K = 9.000 + 1,53 * 12.800 =

28.584,00

b. Gesamtkosten bei unterschiedlichen Intensitäten

Intensität (m/Std)	Menge (X)	fixe Kosten (K _f)	(k _v)	Gesamkoste n (K)
40 Stück	6.400 Stück	9.000,00	1,95	21.480,00
60 Stück	9.600 Stück	9.000,00	1,66	24.936,00
80 Stück	12.800 Stück	9.000,00	1,53	28.584,00
100 Stück	16.000 Stück	9.000,00	1,50	33.000,00
120 Stück	19.200 Stück	9.000,00	1,72	42.024,00



c. Stückkosten

Stück	kvar	kf	k
20 Stück	2,70	2,81	5,51
30 Stück	2,22	1,88	4,10
40 Stück	1,95	1,41	3,36
50 Stück	1,78	1,13	2,91
60 Stück	1,66	0,94	2,60
70 Stück	1,58	0,80	2,38
80 Stück	1,53	0,70	2,23
90 Stück	1,51	0,63	2,14
100 Stück	1,50	0,56	2,06
110 Stück	1,56	0,51	2,07
120 Stück	1,72	0,47	2,19

4.3 Zeitliche Anpassung 3

a. Kfix

kalk. Abrschreibung	7.000,00
kalk. zins	1.680,00
sonst. Kfix	8.380,00
Kfix	17.060,00

b. optimale Intensität

Wir sollen 18.000 Stück pro Tag mit minimalen Kosten herstellen. Dazu ermittelt man zunächst die optimale Intensität, da bei dieser die (variablen) Stückkosten minimal sind. In unserem Fall müssen zunächst die Stückkostenfunktionen ermittelt, addiert und die zusammengefasste Stückkostenfunktion abgeleitet werden:

 $k1 = 0,3d^{2} - 1,8d+4 (=v1 *p1)$ $k2 = 0,5d^{2} - 3d+12 (=v2 *p2)$ mathematisch k3 = 3 kv' = 1,6d-4,8 = !0 $kv = k1 + k2 + k3 = 0,8d^{2} - 4,8d+19$ 1,6d = 4,8 dopt = 3

Da es sich bei der Kostenfunktion um einen Graph einer nach oben geöffneten Parabel handelt, stellt das Extremum bzw. der Scheitelpunkt ein Minimum dar.

Dormat	homotical	O DOMO	icdazur
Dei mai	hematisch	ie bewe	is uazu.

Energie	Wartung	Energie €	Wartung €	Rohstoffe	kvar
16,00 kWh	0,08	1,60000	8,00000	3,00000	12,60
14,69 kWh	0,08	1,46875	7,78125	3,00000	12,25
13,75 kWh	0,08	1,37500	7,62500	3,00000	12,00
13,19 kWh	0,08	1,31875	7,53125	3,00000	11,85
13,00 kWh	0,08	1,30000	7,50000	3,00000	11,80
13,19 kWh	0,08	1,31875	7,53125	3,00000	11,85
13,75 kWh	0,08	1,37500	7,62500	3,00000	12,00
14,69 kWh	0,08	1,46875	7,78125	3,00000	12,25
16,00 kWh	0,08	1,60000	8,00000	3,00000	12,60
17,69 kWh	0,08	1,76875	8,28125	3,00000	13,05
19,75 kWh	0,09	1,97500	8,62500	3,00000	13,60
22,19 kWh	0,09	2,21875	9,03125	3,00000	14,25
25,00 kWh	0,10	2,50000	9,50000	3,00000	15,00
	16,00 kWh 14,69 kWh 13,75 kWh 13,19 kWh 13,19 kWh 13,19 kWh 13,75 kWh 14,69 kWh 16,00 kWh 17,69 kWh 19,75 kWh	16,00 kWh 0,08 14,69 kWh 0,08 13,75 kWh 0,08 13,19 kWh 0,08 13,19 kWh 0,08 13,19 kWh 0,08 13,75 kWh 0,08 14,69 kWh 0,08 16,00 kWh 0,08 17,69 kWh 0,08 19,75 kWh 0,09 22,19 kWh 0,09	16,00 kWh 0,08 1,60000 14,69 kWh 0,08 1,46875 13,75 kWh 0,08 1,37500 13,19 kWh 0,08 1,31875 13,00 kWh 0,08 1,30000 13,19 kWh 0,08 1,31875 13,75 kWh 0,08 1,37500 14,69 kWh 0,08 1,46875 16,00 kWh 0,08 1,60000 17,69 kWh 0,08 1,76875 19,75 kWh 0,09 1,97500 22,19 kWh 0,09 2,21875	16,00 kWh 0,08 1,60000 8,00000 14,69 kWh 0,08 1,46875 7,78125 13,75 kWh 0,08 1,37500 7,62500 13,19 kWh 0,08 1,31875 7,53125 13,00 kWh 0,08 1,30000 7,50000 13,19 kWh 0,08 1,31875 7,53125 13,75 kWh 0,08 1,37500 7,62500 14,69 kWh 0,08 1,46875 7,78125 16,00 kWh 0,08 1,60000 8,00000 17,69 kWh 0,08 1,76875 8,28125 19,75 kWh 0,09 1,97500 8,62500 22,19 kWh 0,09 2,21875 9,03125	16,00 kWh 0,08 1,60000 8,00000 3,00000 14,69 kWh 0,08 1,46875 7,78125 3,00000 13,75 kWh 0,08 1,37500 7,62500 3,00000 13,19 kWh 0,08 1,31875 7,53125 3,00000 13,19 kWh 0,08 1,31875 7,53125 3,00000 13,75 kWh 0,08 1,37500 7,62500 3,00000 14,69 kWh 0,08 1,46875 7,78125 3,00000 16,00 kWh 0,08 1,60000 8,00000 3,00000 17,69 kWh 0,08 1,76875 8,28125 3,00000 19,75 kWh 0,09 1,97500 8,62500 3,00000 22,19 kWh 0,09 2,21875 9,03125 3,00000

Intensität	Energie		Wartung	Energie €	Wartung €
	2	16,00 kWh	0,08000 Std	1,600	8,000
	3	13,00 kWh	0,07500 Std	1,300	7,500
	4	16,00 kWh	0,08000 Std	1,600	8,000
	5	25,00 kWh	0,09500 Std	2,500	9,500

Intensität	Rohstoffe	Energie €	Wartung €	kvar
2	3,00€	1,60€	8,00€	12,60€
3	3,00€	1,30 €	7,50 €	11,80€
4	3,00€	1,60€	8,00€	12,60€
5	3,00€	2,50€	9,50€	15,00€

optimale Intensität 3.000 Stück

c. Kostenfunktion

K = 11,80 * m + 17000

K k

Beispiel 18.000 Stück 229.460,00 12,75

d. Mengencheck

Die optimale Intensität beträgt also 3.000 Stück pro Stunde. Mit dieser Intensität wollen wir arbeiten, da sie am kostengünstigsten ist.

Jetzt mußen wir checken, ob es moglich ist, 18.000 Stück pro Tag zu produzieren: Technisch möglich, da y $_{\rm opt}$ zwischen 2.000 und 5.000 Stück pro Stunde beträgt. OK Wirtschaftlich möglich? Wir benötigen für die Herstellung von 18.000 Stück 6 Stunden [Dauer= 18.000 / 3.000] OK

Damit steht unser optimaler Produktionsplan für eine Beschäftigung mit 18.000 Stück Wir arbeiten bei y = 3.000 Stück pro Std 6 Stunden täglich. Die Kosten pro Stück betragen dann kv = 11,80

e. Nachfragesteigerung 1

zeitliche Anpassung

Wir versuchen, bei der optimalen Intensität zu bleiben, weil hier die Kosten minimal sind. Also muss versucht werden, die Mehrproduktion durch eine Verlängerung der Arbeitszeit zu erreichen. Geht das? AZ = 24.000/3.000 = 8 Stunden ja, die Maschinenlaufzeit lässt sich laut Aufgabe maximal auf 8 Stunden ausdehnen.

Wir konnten also die erhöhe Beschäftigung (=Nachfrage) durch eine zeitliche Anpassung unserer Maschinenlaufzeit bewältigen. Dadurch bleiben die variablen Stückkosten gleich, weil weiterhin mit yopt arbeiten.

4.4 Quantitative Anpassung bei konstanter Betriebsgröße

1. Ermittlung Gesamtkosten / Stückkosten bei 6.000 Stück

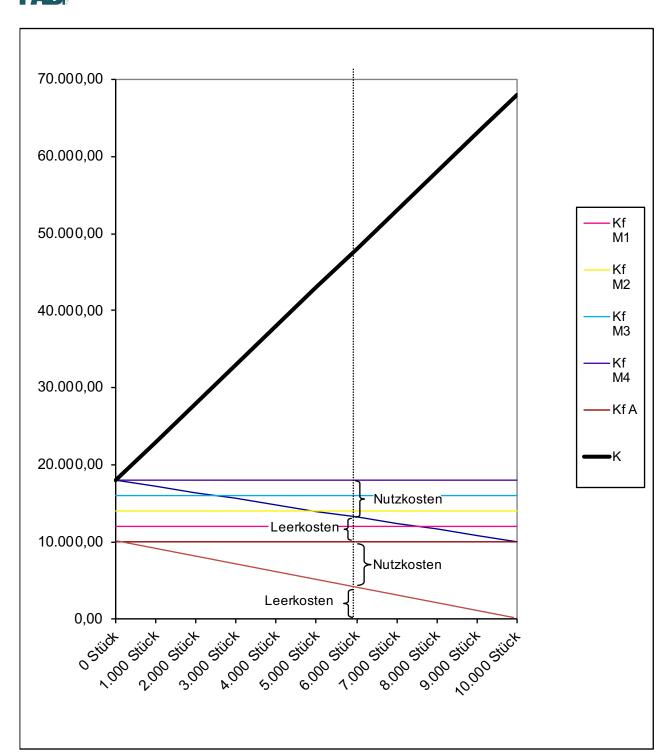
 $K_{6000} = 5x + 18.000,00 = 5*6.000 + 18.000,00 = 48.000,00$ $k_{6000} = 48.000,00 / 6.000 = 8,00$

2. Ermittlung Nutz- / Leer- / Remanenzkosten

 Nutzkosten
 8.000,00 * 6.000 / 10.000
 4.800,00

 Leerkosten
 8.000,00 * 4.000 / 10.000
 3.200,00

 Remanenzkosten
 eine Maschine könnte abgebaut werden
 2.000,00


gesamt:

abteilungsfixe Kosten: Nutzkosten 6.000,00 10.800,00

Leerkosten 4.000,00 7.200,00

3. Grafische Darstellung der Gesamtkosten

				kumulier	te Werte			
BG	Menge	Kf(L)	Kf M1	Kf M2	Kf M3	Kf M4	Kf A	K
0	0 Stück	18.000,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	18.000,00
10	1.000 Stück	17.200,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	23.000,00
20	2.000 Stück	16.400,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	28.000,00
30	3.000 Stück	15.600,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	33.000,00
40	4.000 Stück	14.800,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	38.000,00
50	5.000 Stück	14.000,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	43.000,00
60	6.000 Stück	13.200,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	48.000,00
70	7.000 Stück	12.400,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	53.000,00
80	8.000 Stück	11.600,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	58.000,00
90	9.000 Stück	10.800,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	63.000,00
100	10.000 Stück	10.000,00	12.000,00	14.000,00	16.000,00	18.000,00	10.000,00	68.000,00

Bei einer Produktionsmenge von 6.000 Stück könnten wir auf eine Maschine verzichten. Die Remanenzkosten belaufen sich also auf 2.000,00 €.

4.5 Quantitative Anpassung

a. Wie viele Maschinen müssen angeschafft werden, damit der Auftrag erfüllt werden kann?

Produktionsmenge in Normalarbeitszeit: 16.000 Stück

benötigte Maschinen: 2,50 3 Stück

b. Gesamtkosten

Kfix 18.000,00Kvar = kvar * m = 10.000,00Kges 28.000,00

c. Gesamtkapazität

3 Maschinen --> 48.000 Stück

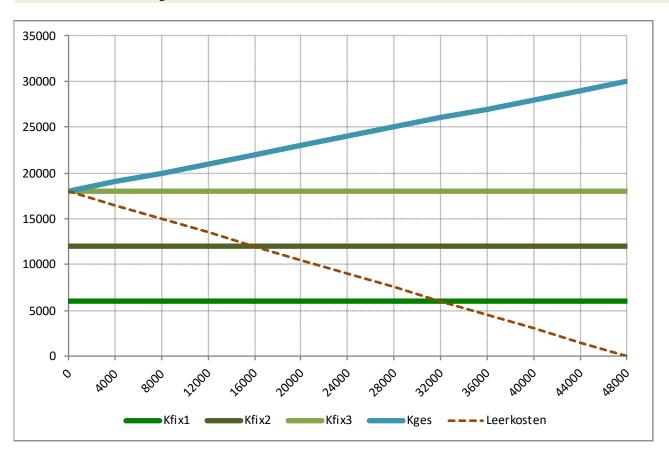
d. Gesamtkosten

Kges = Kfix + Kvar 30.000,00

e. Gesamtkosten bei Rückgang

Kges = Kfix + Kvar Fixkosten bleiben --> 18.000,00 Kvar = kvar *m 4.000,00 Kges 22.000,00

f. Kges ohne quantitative Anpassung


g. Begründung

Zusätzliche fixe Kosten durch Kauf neuer Maschinen bei quantitativer Anpassung können bei einem Beschäftigungsrückgang nicht sofort abgebaut werden. (nur durch den Verkauf der

h. Grafische Darstellung

4.6 Selektive Anpassung bei konstanter Betriebsgröße

1. Unterschied quantitative - selektive Anpassung

quantitativ: alle Anlagen sind gleich, d. h. sie verursachen die gleichen fixen

und variablen Kosten und haben die gleiche Kapazität

selektiv: die Anlagen weisen eine unterschiedliche Kostenstruktur und

Kapazität auf, deshalb besteht bei schwankender Beschäftigung

ein Auswahlproblem

2. Auswahl der Anlagen

Fixkosten der Anlagen bleiben bei Beschäftigungsschwankungen konstant. Zuerst werden die Anlagen mit den niedrigsten variablen Kosten ausgelastet.

Produktionsverteilung

A 1: 4.000 A 2: 2.000 A 3: 0

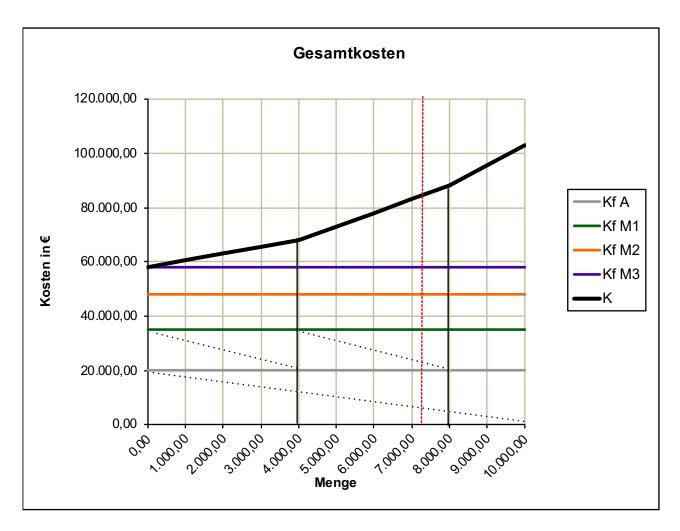
3. Berechnung der Gesamt- und Stückkosten

K ₆₀₀₀ 4.000 * 2,50 + 2.000 * 5,00 + 58.000,00 78.000,00 k ₆₀₀₀ 78.000,00 / 6.000 13,00

4. Berechnung der Nutz- / Leer- / Remanenzkosten

 Nutzkosten
 15.000 + 13.000/2 + 20.000 * 6/10
 33.500,00

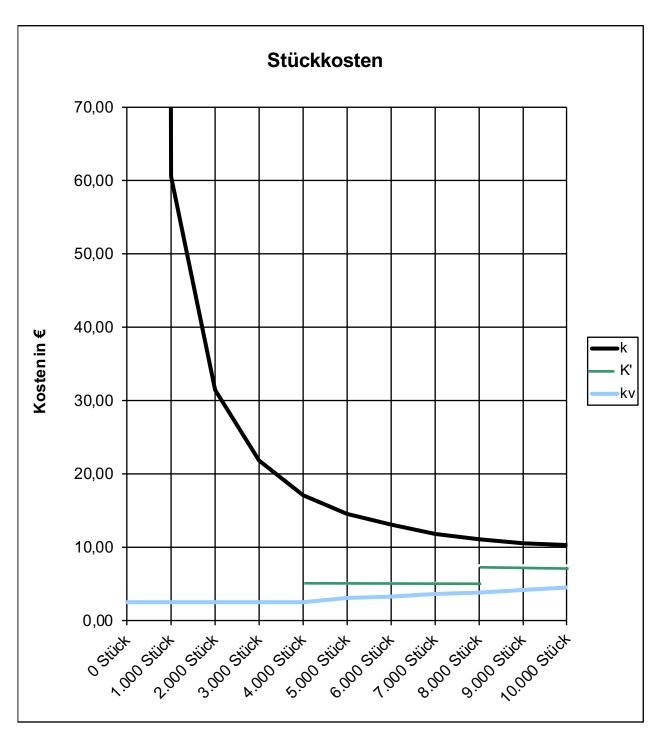
 Leerkosten
 13.000/2 + 10.000 + 20.000 * 4/10
 24.500,00


 Remanenzkosten
 Anlage 3 könnte abgebaut werden
 10.000,00

5. Gesamtkostendarstellung

kumulierte Werte

BG	Menge	Kf A	Kf M1	Kf M2	Kf M3	Kf (L)	K
0	0,00	20.000,00	35.000,00	48.000,00	58.000,00	58.000,00	58.000,00
10	1.000,00	20.000,00	35.000,00	48.000,00	58.000,00		60.500,00
20	2.000,00	20.000,00	35.000,00	48.000,00	58.000,00		63.000,00
30	3.000,00	20.000,00	35.000,00	48.000,00	58.000,00		65.500,00
40	4.000,00	20.000,00	35.000,00	48.000,00	58.000,00		68.000,00
50	5.000,00	20.000,00	35.000,00	48.000,00	58.000,00		73.000,00
60	6.000,00	20.000,00	35.000,00	48.000,00	58.000,00		78.000,00
70	7.000,00	20.000,00	35.000,00	48.000,00	58.000,00		83.000,00
80	8.000,00	20.000,00	35.000,00	48.000,00	58.000,00		88.000,00
90	9.000,00	20.000,00	35.000,00	48.000,00	58.000,00		95.500,00
100	10.000,00	20.000,00	35.000,00	48.000,00	58.000,00	0,00	103.000,00



5. Stückkostendarstellung

BG	Menge	k	K'	kv
0	0 Stück	58.000,00	2,50	2,50
10	1.000 Stück	60,50	2,50	2,50
20	2.000 Stück	31,50	2,50	2,50
30	3.000 Stück	21,83	2,50	2,50
40	4.000 Stück	17,00	2,50	2,50
50	5.000 Stück	14,60	5,00	3,00
60	6.000 Stück	13,00	5,00	3,33
70	7.000 Stück	11,86	5,00	3,57
80	8.000 Stück	11,00	7,50	3,75
90	9.000 Stück	10,61	7,50	4,17
100	10.000 Stück	10,30	7,50	4,50

4.7 Qualitativ selektive Anpassung

Fall 1: Aufgrund der guten Auftragslage soll eine neue Anlage gekauft werden. In der vergangenen Periode wurden 4.800 Stück abgesetzt. Für die kommenden Perioden wird auf Dauer mit einer Auslastung von 6.000 Stück gerechnet. Die Produkte können zum Preis von 50,00 € abgesetzt werden. Neben den o. g. Anlagen steht für die Anschaffung eine Maschine mit der Kostenfunktion K = 7x + 12.000 und einer Kapazität von 2.500 Einheiten zur Auswahl.

a) Wählen Sie die günstigste Anlage aus.

Anlage	kv	Kf(1000)	Kapazität
M1	10,00	10.000,00	2.000,00
M2	20,00	8.000,00	1.500,00
M3	30,00	6.000,00	1.000,00
M4	40,00	4.000,00	500,00
M5	7,00	12.000,00	2.500,00

Wenn man davon ausgeht, dass alle 5 Maschinen eingesetzt werden, findet die Auswahl nach den kvar statt, da die Kfix in voller Höhe anfallen. Reihenfolge also: M5; M1; M2;...

b) Prüfen Sie, ob die Anschaffung wirtschaftlich sinnvoll ist.

Anlage	kv	Kf	m(alt)	K alt	m(neu)	K neu
M5	7,00	12.000,00			2.500 Stück	29.500,00
M1	10,00	10.000,00	2.000 Stück	30.000,00	2.000 Stück	30.000,00
M2	20,00	8.000,00	1.500 Stück	38.000,00	1.500 Stück	38.000,00
M3	30,00	6.000,00	1.000 Stück	36.000,00	0 Stück	6.000,00
M4	40,00	4.000,00	300 Stück	16.000,00	0 Stück	4.000,00
Kf(Abt)				10.000,00		10.000,00
			4.800 Stück	130.000,00	6.000 Stück	117.500,00
Erlöse				240.000,00		300.000,00
Gewinn				110.000,00		182.500,00

Fall 2: Aufgrund einer rückläufigen Auftragslage ist langfristig nur von einer Auslastung von 3.400 Stück auszugehen. Welche Anlage(n) werden abbgebaut, wenn die intervallfixen Kosten voll abbaubar sind.

a. Welche Alternativen

benötigte Kapazität	3.400 Stück
Deliberation Rupuzitut	J. IOO DUUCK

Alternative 1: M1 2.000 Stück Alternative 2: M1 2.000 Stück

 M2
 1.500 Stück
 M3
 1.000 Stück

 Kapazität
 3.500 Stück
 M4
 500 Stück

3.500 Stück

b. Stilllegung

	kv	Kf	Kap	K	k
M1	10,00	10.000,00	2.000 Stück	30.000,00	15,00
M2	20,00	8.000,00	1.500 Stück	38.000,00	25,33
M3	30,00	6.000,00	1.000 Stück	36.000,00	36,00
M4	40,00	4.000,00	500 Stück	24.000,00	48,00

	Stilllegung von M2		Stilllegung von M3 und M	
	Х	K	Х	K
M1	2.000 Stück	30.000,00	2.000 Stück	30.000,00
M2			1.400 Stück	36.000,00
M3	1.000 Stück	36.000,00		
M4	400 Stück	20.000,00		
Kosten		86.000,00		66.000,00

4.8 mutative Anpassung

a. Verfahrensauswahl

Altes Verfahren: K = 2 * 6.000 + 1,5 * 30.000 = 57.000,00Neues Verfahren: K = 16.000 + 1,3 * 30.000 = 55.000,00

Oder: Lösungsansatz von Herrn Morhardt, FOSBOS Bad Wörishofen

Quantitativ könnten die 30.000 m dadurch erreicht werden, dass das bisherige Verfahren gedoppelt wird, mutativ durch Einsatz einer neuen, besseren Maschine unter der Annahme, dass die alte Maschine verkauft und damit die Fixkosten komplett abgebaut werden können

Die neue Kostenfunktion bei quantitativer Anpassung lautet dann:

 $K = 6.000^{\circ}2 + 1.5^{\circ}x = 12.000 + 1.5^{\circ}x$

K(30.000) = 57.000,00 EUR

k (30.000) = 1,90 EUR/m

Bei mutativer Anpassung lautet die Kostenfunktion:

K = 16.000 + 1.3 * x

K(30.000) = 55.000,00 EUR

k (30.000) = 1,83 EUR/m

b. Grenzmenge

mg = (KfixB - KfixA) / (kvar(A) - kvar(B) =

20.000 Stück

Oder: Lösungsansatz von Herrn Morhardt, FOSBOS Bad Wörishofen

Ab einer Produktion von 20.000 St rentiert sich die komplett neue Anlage.

Bei der Break-Even-Menge müssten wir unterscheiden, ob wir im Bereich bis 16.000 m liegen oder zwischen 16.001 m und 32.000 m

Im ersten Intervall gilt:

6.000 + 1.5*x = 16.000 + 1.3 x

x = 50.000 m (Liegt außerhalb der Kapazität!)

Im Bereich zwischen 16.000 m und 32.000 m gilt im BEP:

12.000 + 1,5*x = 16.000 + 1,3*x

0.2 x = 4.000

x = 20.000

Ab 20.001 m lohnt sich das neue Verfahren!

4.9 Zusatzaufgabe mit Mathe-Exkurs

1. Kostenfunktion

Intensität (y)	175	200	225	250
Gesamtverbrauch in kg	8,75	10,00	11,25	18,75
Verbrauch pro Platte in g	50	50	50	75

BWR13

Da es sich bei dem Produktionsfaktor Silizium um einen konstanten Verbrauch und beim Produktionsfaktor Nickel um einen konstanten und zunehmenden Verbrauch (Ausschuss) handelt, ist die optimale Intensität vom Produktionsfaktor Energie abhängig.

$$r = 0.1y^2 - 45y + 5.137,50$$

 $r' = 0.2y - 45 = 0 \rightarrow y = 225$
 $r'' = 0.2 > 0 \rightarrow Min.!$

Produktionsfaktoren	Verbrauch pro Platte bei opt. I.	Verbrauch pro Platte (€) bei opt. I.
Silizium	100 g	0,80
Nickel	11250 g / 225 Stk. = 50 g	0,45
Energie	75 kWh / 225 Stk. = 0,33 kWh	0,10

 \rightarrow K(x)=1,35x+12.000,00

2. Gesamtkosten

Bei optimaler Intensität werden pro Stunde 225 Platten produziert, insgesamt monatlich 36.000 Platten. Demnach beträgt die Normalarbeitszeit 160 Stunden im Monat. An dieser Stundenzahl kann aufgrund rechtlicher Gründe nichts verändert werden.

D. h es bedarf einer höheren Intensitätsstufe: $\frac{40.000}{160} = 250 \, St \, \text{ück pro Stunde}$

Produktionsfaktoren	Verbrauch pro Platte bei Int. 250	Verbrauch / Platte (€) bei Int. 250
Silizium	100 g	0,800
Nickel	18750 g / 250 Stk. = 75 g	0,675
Energie	137,5 kWh / 250 Stk. = 0,55 kWh	0,165

 \rightarrow K(40.000)=1,64 · 40.000+12.000,00=77.600,00

3. Perspektiven

Unternehmen:

Steigende Energiepreise führen zu steigenden Herstellkosten und einem geringeren Stückdeckungsbeitrag. Gewinneinbußen sind die Folge.

Staatsbürger:

Aus ökologischen Gesichtspunkten ist dies positiv zu bewerten. Ggf. führt es dazu, dass das Unternehmen seinen Energiebedarf überdenkt bzw. über alternative Energieformen nachdenkt.

Kunden:

Durch die erhöhten Energiepreise steigen die Verkaufspreise für die Leiterplatten, was sich somit negativ auf die Kunden auswirkt.

4. Kostenfunktion (mathematisch)

$$K(x) = ax^3 + bx^2 + cx + d$$

$$K'(x) = 3ax^2 + 2bx + c$$

$$Kfix(x) = d$$

$$Kvar(x) = ax^3 + bx^2 + cx$$

$$kvar(x) = \frac{ax^3 + bx^2 + cx}{x} = ax^2 + bx + c$$

Optimale Intensität: $K' = kvar \Leftrightarrow 3ax^2 + 2bx + c = ax^2 + bx + c \Leftrightarrow 2ax^2 + bx = 0$

Optimale Intensität: $Minimum\ kvar \Leftrightarrow 2ax + b = 0$

Eine Kostenfunktion dritten Grades besitzt vier Parameter, damit sind auch vier Gleichungen nötig, um das lineare Gleichungssystem zu lösen.

$$I K(0) = 10.000 \Leftrightarrow d = 10.000$$
 (Fixkosten)

II
$$K(20) = 30.000 \Leftrightarrow 8.000a + 400b + 20c + d = 30.000$$
 (Gesamtkosten bei 20 Stück)

III
$$kvar'(10) = 0 \Leftrightarrow 20a + b = 0$$
 (optimale Intensität)

IV
$$K'(10) = 150 \Leftrightarrow 300a + 20b + c = 150$$
 (Grenzkosten)

Daraus entsteht folgendes lineares Gleichungssystem:

II
$$8.000a + 400b + 20c + 10.000 = 30.000 \Leftrightarrow 8.000a + 400b + 20c = 20.000$$

III
$$b = -20a$$

IV
$$300a + 20b + c = 150$$

III
$$b = -20a$$

$$II - 20 \cdot IV$$
 $2.000a = 17.000 \Leftrightarrow a = 8.5$

a in III
$$b = -170$$

a, b in IV
$$c = 1.000$$

$$K(x) = 8,5x^3 - 170x^2 + 1.000x + 10.000 \text{ für } x \in [0;20]$$